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A new model of cluster aggregation 

R Jullien 
Physique des Solides, Universite Paris-Sud, Centre d’Orsay, 91405 Orsay, France 

Received 30 September 1985 

Abstract. An extension of the model of diffusion-limited cluster-cluster aggregation, which 
emphasises sticking by tips, is numerically investigated. It is argued that the model can 
be physically justified in the case of polarisable clusters. A quantitative agreement is found 
with a recent experiment of aggregation of silica microspheres in two dimensions. The 
particle-cluster counterpart of the model is also studied. 

1. Introduction 

Several theoretical models have been recently introduced to describe the geometry of 
clusters obtained by aggregation of particles (Family and Landau 1984). The prototype 
is the diff usion-limited particle-cluster ( PCI) aggregation model of Witten and Sander 
(1981), in which single Brownian particles stick one after another on to an immobile 
cluster. It quantitatively describes several experiments such as electrodeposition (Brady 
and Ball 1984, Matsushita er a1 1984) and filtration (Houi and Lenormand 1984), as 
well as others which are not truly aggregation, such as dielectric breakdown (Niemeyer 
et a1 1984) and the motion of fluids in porous and viscous media (Patterson 1984, 
Nittmann er a1 1985, Kadanoff 1985). An alternative model is the clustering of clusters 
(cia) model (Meakin 1983, Kolb et a1 1983) in which clusters, as well as particles, 
are allowed to diffuse and stick together when they come in contact. This model is 
better adapted to truly aggregation experiments. In the case of the aggregation of 
smoke particles (Forrest and Witten 1979) or colloids (Weitz and Oliveria 1984) the 
experimental fractal dimension has been quantitatively recovered ( D  - 1.75 in three 
dimensions). Many extensions of cia have recently been introduced to apply to various 
peculiar experimental situations (Botet er a1 1985). In particular, it has been shown 
that, in the molecular regime, when Brownian motion is replaced by random straight- 
line trajectories, the fractal dimension is slightly increased (Meakin 1984, Ball and 
Jullien 1984). More generally, in cia (as well as in XI) decreasing the fractal dimension 
of the cluster trajectory implies stronger penetration effects and thus leads to a resulting 
larger fractal dimension of the clusters. In this paper I would like to describe an 
alternative extension of cici which, in contrast to the previous ones, considers smaller 
penetration. The present model systematically emphasises sticking on tips and con- 
sequently leads to a smaller fractal dimension of the clusters. I argue that this is 
physically justified when considering electrostatic forces in the case of polarisable 
clusters. The creation of this model was mainly motivated by the recent experiment 
by Hurd and Schaeffer (1985) on aggregation of silica microspheres in two dimensions. 
Hurd and Schaeffer (HS) obtained very ‘stringy’ clusters with a fractal dimension 
D = 1.20k0.15, much smaller than the one found by two-dimensional simulations on 
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cici ( D  = 1.40 in d = 2 (Meakin 1983, Kolb et a1 1983)). The model has been sketched 
and a few results already announced in a short comment on the HS paper (Jullien 
1985) and here I present further details and results. 

2. The model and its physical interest 

The model is a ‘hierarchical’ version of cici (Botet et a1 1984a, b) in which successive 
collections of clusters of the same number of particles, 2, 4, 8, .  . . ,2k, . . . , are built, 
iteratively, starting from an initial set of individual particles. Moreover, it is ‘off-lattice’ 
in the sense that, in d-dimensional space, the particles are hard d-dimensional hyper- 
spheres of unit diameter which irreversibly stick when in contact. At step k, a collection 
of clusters of 2 k  particles has been generated. These clusters are grouped into pairs. 
Each pair generates a cluster of 2k+’ particles which becomes a member of the new 
collection. Here the model essentially differs in the way a new cluster is built. I 
consider the two clusters of a pair, say C,  and C,. I first choose a random direction 
in space: this defines a randomly oriented z axis. C,  and C2 are placed far apart, at 
abscissae -CO and +CO, respectively, on this axis. I determine the particles P, (of C , )  
and P2 (of C,) such that the distance P1P2 is a minimum. Then, C, is rigidly translated, 
without rotation, to a position C ;  where these two particles come in contact aligned 
along the z direction. The reunion of C,  and C ;  forms the new cluster. Practically, 
as shown in figure 1, given the two clusters, anywhere in space (not necessarily far 
apart), the sticking points on each cluster C ,  (C, )  can easily be found by determining 
the point of contact with the (d  - 1)-dimensional hyperplane, tangent to the cluster, 
perpendicular to the z axis, with the highest (lowest) abscissa. Note that the only 
source of randomness in the model comes from the choice of the z axis. 

Figure 1. Sketch of the collision process (see text). 

This procedure can be physically justified in the case of polarisable clusters as 
follows. I shall consider, in the low concentration limit, two clusters, far apart from 
each other, before they collide. If they are polarisable, opposite charges appear on 
their nearest tips, which are the points Pl and P2 defined above. Then, I assume that 
the electrostatic attraction between PI and P2 is so strong that it biases the random 
diffusion of the clusters and that they will finally stick on these tips. 
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As presented here the model has the great advantage of being very simple but it 
obviously gives a sketch of the physical situation. In practice, the electrostatic inter- 
actions are not so strong and are probably partially screened so that the resulting 
penetration would in fact be intermediate between the one obtained with pure Brownian 
motion and the one defined here. Moreover, I have neglected the repulsion between 
a given tip and the opposite part of the other cluster. This could be justified since for 
large clusters this repulsion, acting on larger distances, is of smaller intensity. Indeed, 
as already noticed by Hurd and Schaeffer (1985) taking this repulsion into account 
would induce some rotation tending to align the clusters. Note that the two 
modifications suggested here (not completely biased diffusion and rotational align- 
ments) act in opposite ways and could compensate themselves in the final result for 
the fractal dimension. Further works are in progress to quantitatively appreciate these 
effects. Finally, I would like to restate that the hierarchical model is only justified in 
the low concentration regime (Botet et a1 1984a). The quantitative results could be 
modified for larger concentrations near the gel condition (Botet et a1 1984b, Kolb and 
Herrmann 1985). 

3. Results 

Using the procedure defined in 5 2 I have generated 100 independent clusters of 8192 
particles, up to dimension d = 30. Typical clusters of 1024 particles in d = 2 and d = 3 
are shown in figure 2. Note the resemblance of our two-dimensional cluster with those 
of Hurd and Schaeffer (1985). The fractal dimension has been determined from the 
variation of the averaged radius of gyration with the number of particles: 

R( N) - N' lD  N+CO. 

This dimension D can only be defined in the asymptotic limit of very large clusters. 
Practically, D can be estimated by extrapolating to N + a ,  an effective N-dependent 
fractal dimension (Botet er a1 1984a) 

D, =In 2[ln(R(2N)/R(N)]- '  

which is obtained by comparing the relative radii of gyration of the clusters between 
two successive collections. I have also calculated another finite-size estimate 

D, = In 4 { l n [ ( ~ ( 2 ~ ) * - a ) / ~ ( ~ ) ~ ] } - ' .  

Obviously, this estimate has the same limit for N -* CO but, as shown recently (Ball and 
Jullien 1984) the approach of D2 to its limiting (N + CO) value at small cluster sizes is 
much closer. 

Figure 3 shows a plot of D, and D2 against 1 / N  for d = 2 .  As in Ball and Jullien 
(1984), the convergence of D, is very good, giving here D = 1.28i0.03. 

Despite the low value found for D in d = 2, I consider that figure 3 strongly supports 
an asymptotic value definitely different from 1. This value is in good agreement with 
the experimental result D = 1.20*0.15 of Hurd and Schaeffer (1985). 

The same analysis can be done in higher dimension and the results are reported 
in table 1. 

Figure 4 shows a plot of D as a function of d. For large d, D increases very slowly 
with d and might saturate to the fractal dimension of the 'ghost' model of Ball and 
Witten (1984), Dg = In 4/ln z== 3.42 when d + CO. This suggests that the present model 
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Figure 2. Typical clusters of N = 1024 particles in d = 2 (top) and d = 3 (bottom) obtained 
with the cluster-cluster version of the model. (In the d = 3 picture the different grey tones 
indicate the depth.) 

Figure 3. Plot of the effective (size-dependent) fractal dimensions D, and D, against 1 /N 
in the case of the two-dimensional cluster-cluster version of the model. 



A new model of cluster aggregation 2133 

Table 1. Numerical values obtained for the fractal dimension in the cluster-cluster version 
of the model. 

d 2 3 4 10 20 30 

D 1.28 * 0.03 1.42 i 0.06 1.55i0.06 2.00 f 0.08 2.3 i 0.1 2.5 f 0.1 

't 

I 1 -  
1 I I 

10 20 30 
d 

Figure 4. Plot of the fractal dimension D against the space dimension d, in the case of 
the cluster-cluster version of the model. 

does not have any upper critical dimension. This is reasonable since, due to the 
procedure itself, no transparency is allowed in any finite dimension. 

4. The particle-cluster counterpart 

Although I have not yet found any experimental realisation, I consider it instructive 
to study the PCI counterpart of the present model. Now, as in the original model of 
Witten and Sander (1981), single particles are added, one after another, on to an 
immobile cluster. The above procedure is thus straightforwardly extended by consider- 
ing that C,  is always a single particle. After choosing the random direction, the 
( d  - 1)-dimensional hyperplane of the largest abscissa tangent to the cluster is deter- 
mined and the extra particle is added on its contact point. In figure 5, I show typical 
clusters of N = 1024 particles, in d = 2 and d = 3. They look like stars with only a few 
stick-shaped arms. However randomness is still present and one observes some kind 
of screening effect, as in the original PCI model. When two large arms exist near each 
other, extra arms between them have difficulty in growing and show fewer fluctuations 
(they are more linear). When studying the radius of gyration as a function of the 
number of particles it appears that a linear behaviour is always recovered for a 
sufficiently large size, suggesting that the fractal dimension is trivially equal to 1 in 
this model. This is quantitatively illustrated in figure 6 where I have plotted N I R  
against In N, up to d = 6.. In this series of calculations 500 independent clusters of 
4096 particles have been generated and the square of the radii of gyration has been 
averaged over all the clusters of the same number of particles. On this figure, one 
always observes a saturation of N I R  with increasing N. However, it is necessary to 
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Figure 5. Typical clusters of N = 1024 particles in d = 2 (top) and d = 3 (bottom) obtained 
with the particle-cluster version of the model. ( In  the d = 3 picture the different grey tones 
indicate the depth.) 

3 4  

2 G  t 
10 

N'R I 
d = b  

0 2 4 b 8 
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Figure 6. Plot of N / R  against In N for different d values, in the case of the particle-cluster 
version of the model. 
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reach larger sizes to effectively see this saturation when reaching larger dimensionalities. 
Moreover this figure suggests that, if the fractal dimension remains equal to 1 for any 
finite d, logarithmic corrections could appear in the limit of infinitely large d ( R  
behaving as N/ ln  N ) .  

It is interesting to note that the fractal dimension decreases when going from CICI 

to PCI, while this is not the case with pure Brownian trajectories (Botet et a1 1984b). 

5. Conclusion and discussion 

I have presented a very simple extension of previous diffusion-limited aggregation 
models, which takes into account electrostatic interactions in the case of polarisable 
clusters. While I do not believe that the PCI version of this model has any experimental 
realisation, the clcl version could quantitatively apply well to the experiment by Hurd 
and Schaeffer (1985) on silica microspheres. As already proposed by HS, the electro- 
static interactions are certainly present and are able to reduce the cluster penetration 
and decrease the fractal dimension. Moreover, much more recently, a 3~ aggregation 
experiment on aluminium hydroxide Al(OH),,, has been reported by Axelos et a1 
(1985) with a fractal dimension D - 1.4, much lower than the 3~ value of the original 
CICI model. Since their value is comparable with that obtained in 2~ simulations on 
CICI, these authors concluded that they had an effective 2~ aggregation mechanism. 
One could imagine instead that the present model could apply, since here D =  
1.42*0.06 in 3 ~ .  However, it is essential to understand why polarisation effects are 
so strong in such experiments. Further work is thus needed to improve and justify the 
present model. 
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